
LIVING IN CYN:
MATING AIML AND CYC TOGETHER WITH PROGRAM N

Kino Coursey
Daxtron Laboratories, Inc.
http:\\www.daxtron.com

January, 2004

This is a brief note on some of Daxtron Labs’ experiments on linking the Artificial Intelligence
Markup Language (AIML) interpreter called Program N (by Gary Debuque) to OpenCyc (a
freeware version of the Cyc program created by Cycorp). The modified interpreter is called
CyN (pronounced "sin"). The CyN interpreter reuses the basic resources of Program N, modifies
its graphmaster pattern match algorithm, adds a few basic tags to allow translation of English to
CycL (Cyc's internal language) and control of the formatting of OpenCyc's responses.

All work was done on a Windows XP laptop. The modifications made should have high
portability to most Internet-enabled AIML interpreters. No modifications were made to
OpenCyc. No modification should be required to swap full Cyc for OpenCyc.

The goals of the system are to:

• provide a pattern based parser for use with OpenCyc suitable for chatbots / virtual
human experimentation and basic knowledge entry of logical relationships

• be an interpreter that allowed an easy way to interface AIML to OpenCyc
• create a set of example AIML categories to answer questions using OpenCyc
• provide a tool for experimentation with both systems
• provide a natural language front-end ahead of the current OpenCyc schedule
• be a tool capable of creating a “personality” for OpenCyc systems
• be a scaleable tool (AIML sets have 40,000 language patterns and full Cyc has 1.6 million

facts)
• be a tool that can be integrated with other systems
• be open; based on Program N it is free to download, modify and reuse

For example, given (boss John Steve) "the boss of John is Steve" and the pre-existing OpenCyc
ontology (version 0.7.1) the system could answer:

"Who is John boss"
 "Who does John know" (people are acquainted with their bosses)
 "Who is the boss of John"
 "Who is the superior of John" (boss defines a hierarchy relationship)
 "Who influences John" (boss defines an influences relationship)
 "Who does Steve boss"
 "Who does Steve influence"

… and similar questions. CyN provides a way to access those answers via a conversational
front end. As a side benefit it can also provide answers through a MSAgent character using
text-to-speech.

 WARNING: This paper contains graphic depiction of promiscuous AIML <tag> development,
and forced inter-model mixing. Please delete this paper if you find such behavior or its
depiction offensive.

1. AIML, OPENCYC, CYCL API AND ENGLISH

CyN’s Design Principles

One of the first questions that interested programmers want to know about OpenCyc is what
kind of natural language interface is there and can they talk with it. As of January 2004 the
natural language interfaces have not been released. So the primary goal was to provide such an
interface that was easy to program, and as a side effect allowed for immediate rewarding
feedback from learning CycL.

The core design principle was to provide maximum flexibility and transparency with minimum
effort. AIML was selected due to its large user community, user interest, and easy to learn
syntax. Into this were added the basic ability to communicate with OpenCyc and use its
responses in replies or control the flow of execution. Another choice was as an experimental
system to make the system complete first before focusing on efficiency. This does not mean it is
inefficient, just that given a choice, simplicity and completeness had higher design value.

 Screenshot of Daxtron’s CyN Development System

What is AIML? … and the History of Pattern Matching

AIML stands for Artificial Intelligence Markup Language. It is an XML-based language created
by Dr. Richard Wallace and primarily used to create conversational Chatbot applications. The
reference character ALICE won the 2000 and 2001 Lobener prizes, and is used as a starting point
for new developers. The core feature of the language is the easy ability to create conversational
agents through the process of pattern matching. ALICE has 40,000 patterns that either trigger a
direct response or cause a reinterpretation to a simpler form.

One of the most famous early pattern based natural language programs is ELIZA by
Weizenbaum. ELIZA utilized several hundred patterns, and tried to mirror the personality of
the conversational partner. After some analysis of conversations Dr. Wallace noticed that
conversational inputs followed Zipf’s law and that upwards of 95% of inputs could be

accounted for in common chat by several thousand patterns. Thus, ALICE’s performance owes
to the fact that for the most part in general conversation people tend to say only a few thousand
things in different ways. AIML is designed to make the specification of these common
conversational patterns fairly easy. It also provides for easy specification of surface variations in
both input and output, which is useful for virtual human personality scripting.

<category>

<pattern>WHAT ARE YOU DOING</pattern>

<template>

Just waiting for a mystery to solve.

</template>

</category>

<category>

<pattern>WHAT ARE YOU UP TO</pattern>

<template>

<srai>WHAT ARE YOU DOING</srai>

</template>

</category>

Example AIML Categories

A factor from the early history of AI was the combination of semantic processing with pattern
matching. ELIZA as part of its processing could execute arbitrary LISP programs of any
complexity to answer a query. SIR (Semantic Information Retrieval) by Bertram Raphael in
1964 combined a pattern matching front end with a simple relational logic inference engine, to
answer questions about the relation between objects. Both were created before a split between
pattern processing and symbolic inference occurred. At the time the field was small enough that
all methods were unified. CyN explores the possibility of reintegrating the two methods of
large scale pattern matching (embodied in AIML) with large scale inference (embodied in
OpenCyc) after a 40 year separation.

One of the best places to find out information about AIML is http://www.alicebot.org/articles/

What is OpenCyc?

The Cycorp Cyc project has released their "free to use version", OpenCyc. Currently a Linux
and Windows XP binary executable, at 40-60 MB, OpenCyc claims to be a resource for
commonsense reasoning. The system supports a full logic engine capable of reasoning with
contradictions by defining local non-contradictory (i.e. locally consistent) subdomains. Tutorial,
documentation and download are available at the site http://www.opencyc.org

http://www.alicebot.org/articles/
http://www.opencyc.org/

OpenCyc is:

• a collection of facts that are a subset extracted from full Cyc
• an inference engine to reason using those facts and others acquired
• a browser interface for the facts and inference engine
• a lisp interpreter with a TCP/IP interface
• an API designed to access the inference engine using the TCP/IP interface

Cyc and OpenCyc support associating facts together in inherited clusters called microtheories.
Different microtheories can contain contradictory, fictional or contra-factual statements, but all
facts in a given chain of microtheories must be consistent. Microtheories allow explicit
representation of the context of logical statements, providing focus to the inference engine. This
design allows the system to reason about multiple scenario's with contradictions without
breaking. ("Captain Kirk watch out!")

Tutorial materials are available at: http://www.opencyc.org/doc

The larger system Cyc, on which OpenCyc is based, has been in development for 19 years, and
contains 1.6 million manually-entered facts and rules that interrelate 118,000 concepts.

What is the CycL API?

The CycL API defines a series of functions and modules that allow external applications to
connect and uses the Cyc level knowledge base. The interface is via TCP/IP, and different
services are provided on different ports. The default port for external applications is 3601. The
port provides access both to Cyc level functions and access to the SubL LISP interpreter, the
language Cyc is written in. You can access this port directly using telnet or via your program.

There are some basic functions and facts you need to know about the API:

(fi-complete "string")

 returns a list of CycL symbols that might match "string"

(cyc-find-or-create cycsymbol)

 returns the CycL symbol if it finds it, or if it does not find it, it creates a new one

(cyc-assert '(cycformula) #$MicrotheoryMt)

adds (cycformula) to the facts in the speficied MicrotheoryMt

(cyc-unassert '(cycformula) #$MicrotheoryMt)

removes (cycformula) from the facts in the specified MicrotheoryMt

(cyc-ask '(formula) #$MicrotheoryMt)

asks cyc to find the answers to the the formula in a certain Microtheory. Note that Cyc
will use its inferencing abilities to find responses to the answers to the formula.

http://www.opencyc.org/doc

All Cyc symbols are prefaced by "#$". So, "dog" is "#$Dog" or "#$Doggie-TheWord".

The best current online reference sources detailing external connections to OpenCyc:

http://www.opencyc.org/doc/opencycapi

http://www.cyc.com/cycdoc/ref/subl-reference.html

English Terms and CycL Symbols

Cyc deals with symbols that are associated to one another by a web of relations. The relations
and symbols denoting objects or concepts have names similar to the English or other language
words. Words are combined in camel format. In camel format the phrase “United States
Person” becomes “UnitedStatesPerson”, which designated a concept that corresponds to
“American”. More on the relationship between words and symbols are explained in the section
on the <cycterm> tag.

Also if note is the fact that the Cyc KB has a finer distinction of some relations than English. For
instance:

• “A Collie is a Dog” = (#$genls #$Collie #$Dog) since Collie is a collection and Dog is
one generalization of what a Collie is.

• “Rover is a Collie” = (#$isa #$Rover #$Collie) since Rover is an individual. Cyc will
infer that Rover is a #$Dog, #$Mammal, #$Thing, etc.

2. THE “TAG” REFERENCE

Additional features are required in both AIML and OpenCyc to communicate effectively. In
trying to keep with the minimalist tradition of AIML, the smallest set of new tags that would
offer the most functionality was sought. The code to implement the new functionality was done
in C++ in Program N. CyN thus is a superset of AIML as implemented by Program N. Most of
the new tags correspond to existing AIML tags.

Several new Cyc-centric tags were created:

<cycterm> translates an English word/phrase into a Cyc symbol
<cycsystem> executes a CycL statement and returns the result
<cycrandom> executes a CycL query and returns one response at random
<cycassert> simple way to assert a CycL statement
<cycretract> simple way to retract a CycL statement
<cyccondition> controls the flow execution in a category template
<guard> processes a template only if the CycL expression is true

These tags directly wrapper SubL/CycL expressions to allow for maximum flexibility with
minimum overhead.

http://www.opencyc.org/doc/opencycapi
http://www.cyc.com/cycdoc/ref/subl-reference.html

The <cycterm> tag

One core problem between the external world of English and the internal world of Cyc symbols
is translating between the two. Cyc symbols are designed to be unambiguous. Each symbol is
designed to have one meaning while a natural language word can have many. A word can be
represented by the symbol "#$Word-TheWord". This symbol representing the "word" can then
be associated with the many internal symbols. For instance "#$Dog" can be associated with
"#$Dog-TheWord" , "#$Doggie-TheWord", "#$Puppy-TheWord" etc. Another example is
"American" can be translate to the unique internal concept "#$UnitedStatesPerson".

<cycterm> is responsible for converting the external English term into the internal Cyc symbol
by querying the OpenCyc KB.

found=lookupCycTerm("(fi-ask '(#$denotation #$%s-TheWord ?TEXT ?TYPE ?CYCOBJECT) #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$denotationRelatedTo #$%s-TheWord ?TEXT ?TYPE ?CYCOBJECT)
#$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$nameString ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$initialismString ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$abbreviationString-PN ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$preferredNameString ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$countryName-LongForm ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$countryName-ShortForm ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$acronymString ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$scientificName ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$termStrings ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$termStrings-GuessedFromName ?CYCOBJECT \"%s\")
#$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$prettyName ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$nicknames ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$preferredTermStrings ?CYCOBJECT \"%s\") #$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$preferredGenUnit ?CYCOBJECT ?POS #$%s-TheWord)
#$EverythingPSC)",text);

if (!found) found=lookupCycTerm("(fi-ask '(#$and (#$wordStrings ?WORD \"%s\") (#$or (#$denotation ?WORD ?TEXT
?TYPE ?CYCOBJECT) (#$denotationRelatedTo ?WORD ?TEXT ?TYPE ?CYCOBJECT))) #$EverythingPSC)",ltext);

//Followed by asking Cyc to guess at the word using (fi-complete \”%s\”)

// and if that fails returns a string of using #$\”%s\”

Basic English word to Cyc term lookup process

This tends to find at least one plausible term. Often there are more. When there are multiples
the system chooses to use the first. A better method would be to use an English to CycL parser.
Additional KB resources also exist. See: http://www.cyc.com/cycdoc/ref/nl.html

We are looking at ways of providing phrase parsing to improve the functionality of <cycterm>.

One possible optimization is to cache the results.

The <cycsystem> tag

Cyc system does basically what the <system> tag does but is specifically modified to use the Cyc
API port. Once the string is processed on the AIML side it is passed to the Cyc API port, and the
response is returned. It does have one modification, in that the LISP terms used to signal either
true or false are converted to "TRUE" or "FALSE". In this way the AIML interpreter does not
need to parse LISP directly.

In the following AIML example:

<category>

<pattern>ARE YOU A *</pattern>

<template>

<srai>CYCREPLY <cycsystem>(cyc-query '(#$isa #$Self <cycterm><star
index="1"/></cycterm>) #$EverythingPSC) </cycsystem></srai>

</template>

</category>

<category>

<pattern>CYCREPLY *</pattern>

<template>

<star/>

</template>

</category>

<category>

<pattern>CYCREPLY 500 * IS NOT AN EXISTING CONSTANT</pattern>

<template>

I am sorry. Cyc does not have a Constant called <star/>.

</template>

</category>

<category>

<pattern>CYCREPLY TRUE</pattern>

<template>

http://www.cyc.com/cycdoc/ref/nl.html

<random>

Yes.

Affarmitive.

Right.

</random>

<random>

I beleive that.

I agree.

I think so.

</random>

</template>

</category>

<category>

<pattern>CYCREPLY FALSE</pattern>

<template>

<random>

No.

Negative.

Nope.

</random>

<random>

I can't prove that.

I can't say that.

Not that I know of.

</random>

</template>

</category>

If given "Are you a person?", the pattern would match with “*”= “person”. Working from the
inside out the system will translate (cyc-query '(#$isa #$Self <cycterm><star

index="1"/></cycterm>) #$EverythingPSC) into (cyc-query '(#$isa #$Self

<cycterm>person</cycterm>) #$EverythingPSC) and then into (cyc-query '(#$isa #$

#$Person) #$EverythingPSC) . This is passed to <cycsystem> for execution, which will return
TRUE. <srai> will then process CYCREPLY TRUE, match another pattern and return "Right. I
believe that."

The <cycrandom> tag

<Cycrandom> combines both the features of the regular AIML <random>/ tag combination
with the <cycsystem> tag function. First, it executes a formula on OpenCyc. It then collects all
the responses that bind to the ?REPLY variable and converts them into a set of tags. It then
passes these to a copy of the existing <random> tag processor. The result is that it returns one of
the items that matches ?REPLY.

For example:

<category>

<pattern>WHO IS AN *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$isa ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)
</cycrandom> is a <star/>.

</template>

</category>

Would match "Who is an american" and might respond, "Susan is a American", where
"American" is translated to "#$UnitedStatesPerson" by the <cycterm> tag.

The use of <cycrandom> opens the door for storing and using responses on the Cyc side. The
responses returned can be in response to very complex queries, and take in to account items like
the expected consequences of making a particular response, or collect them from the
microtheories active at the time.

The <cycretract> and <cycassert> tags

<cycassert> will accept a CycL formula and assert it to the CycKB.

<cycretract> will first find those terms that match the expression, then un-assert it from the
CycKB.

<category>

<pattern>FORGET * IS A *</pattern>

<template>

<cycretract>(#$isa <cycterm><star index="1"/></cycterm> <cycterm><star
index="2"/></cycterm>) #$AimlContextMt</cycretract>

</template>

</category>

<category>

<pattern>MAKE * A *</pattern>

<template>

<cycsystem>(fi-find-or-create "<star index="1"/>")</cycsystem>

<cycassert>(#$isa <cycterm><star index="1"/></cycterm> <cycterm><star
index="2"/></cycterm>) #$AimlContextMt</cycassert>

</template>

</category>

<category>

<pattern>WHAT IS *</pattern>

<template>

<cycsystem>(fi-ask '(#$isa <cycterm><star index="1"/></cycterm> ?REPLY)
#$AimlContextMt)</cycsystem>

</template>

</category>

The <cyccondition> tag

 The <cyccondition> is a template side tag. It allows branching to occur based on the outcome of
a CycL query. The <cyccondition> has two forms: the single condition and list-conditional.
Multiple <cyccondition> can be listed inside a single <template>. The CycL query can be
contained either inside the query attribute of the <cyccondition> or enclosed tags. The
query is run through the same process as <cycsystem> and true or false is returned, with the
results controlling execution.

The format can be (case 1):

<cyccondition query="cycL query"> AIML Statements </cyccondition>

—OR (case 2)—

<cyccondition>

<li query="cycL query1"> AIML Statements

:

:

<li query="cycL queryN"> AIML Statements

Default AIML statements

</cyccondition>

—OR (case 3)—

<cyccondition query="cycL query1"> AIML Statements </cyccondition>

<cyccondition query="cycL query2"> AIML Statements </cyccondition>

:

:

<cyccondition query="cycL queryN"> AIML Statements </cyccondition>

In the first case the AIML statements only execute if the query is true.

In the second case only the first one with a true query will be executed.

In the last case each one whose query matches will be executed.

As tested below <cycconditions> can be nested:

<category>

<pattern>TESTY *</pattern>

<template>

Test Y =

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$Mammal) #$AimlContextMt)"> Its a Mammal.</cyccondition>

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$PhysicalDevice) #$AimlContextMt)"> Its a Physical Device
Thingy.</cyccondition>

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$Thing) #$AimlContextMt)"> Its a Thingy.</cyccondition>

</template>

</category>

<category>

<pattern>TESTZ *</pattern>

<template>

Test Z =

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$Thing) #$AimlContextMt)"> Its a Thingy.

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$PhysicalDevice) #$AimlContextMt)"> Its a Physical Device
Thingy.</cyccondition>

</cyccondition>

<cyccondition query="(fi-ask '(#$genls <cycterm><star/></cycterm>
#$Mammal) #$AimlContextMt)"> Its a Mammal.</cyccondition>

</template>

</category>

Dialog using above categories:

testy dog

Test Y = Its a Mammal. Its a Thingy.

testy car

Test Y = Its a Physical Device Thingy. Its a Thingy.

testz dog

Test Z = Its a Thingy. Its a Mammal.

testz car

Test Z = Its a Thingy. Its a Physical Device Thingy.

testz plant

Test Z = Its a Thingy.

The <guard> tag

A way to have a distributed version of the <cyccondition> tag is via the <guard> tag. The
<guard> tag is usually the first tag of a template, and can specify that a CycL condition to be
tested. If that condition is not met, the system backtracks to try other patterns that can match
both the <pattern> and <guard> OR matches the <pattern> and has no <guard>. This allows
CycL conditions to be part of the category matching process.

Before ELIZA and PARRY there was SIR (Semantic Information Retrieval). SIR used both
pattern matching AND a hand written logical inference engine. As part of its pattern matching
was the ability to query the inference engine to determine if a pattern element belonged to a
certain class before performing the action. This idea over time came to be expanded into the class
of semantic parsers. The <guard> provides a means to implement this functionality in CyN.

The <guard> is implemented in the <template> because in Program N to access the <star> info
that is often of interest, you have to be in the <template>. In addition, the graphmaster
algorithm (used by many AIML interpreters) expects words as test conditions, not arbitrary
evaluation strings. Since the <guard> is a condition for execution of the template, technically it
should appear outside the <template> tag. Such a change may be considered in a future release.

Example categories using <guard>:

<category>

<pattern>ID A *</pattern>

<template>

<guard>(fi-ask '(#$genls
<cycterm><star/></cycterm> #$Mammal)
#$AimlContextMt)</guard>

Its a Mammal.

</template>

</category>

<category>

<pattern>ID A *</pattern>

<template>

<guard>(fi-ask '(#$genls
<cycterm><star/></cycterm>
#$PhysicalDevice)
#$AimlContextMt)</guard>

Its a Physical device(tm).

</template>

</category>

<category>

<pattern>ID A *</pattern>

<template>

<guard>(fi-ask '(#$genls
<cycterm><star/></cycterm> #$Thing)
#$AimlContextMt)</guard>

Its Something.

</template>

</category>

<category>

<pattern>ID A *</pattern>

<template>

You know, I don't know what <star/>
really is.

</template>

</category>

Test dialog using above categories

ID a Dog

Its a Mammal.

ID a Car

Its a Physical device(tm).

ID a American

Its a Mammal.

ID a country

Its Something.

ID a Cat

You know, I don't know what CAT really
is.

3. OPENCYC AS A PREDICATE STORE

A deeper coupling can exist between OpenCyc and AIML. AIML during a conversation can
store and use variables based on the dialog. These variables could be reported and retrieved
from OpenCyc. In AIML variables are called “predicates”, which is a word also used by first
order predicate logic and Cyc.

I modified the Program N predicate/variable storage mechanism to send changes to an
OpenCyc microtheory called AimlContextMt. A snapshot is included in the Appendixes. The
variable "myvar" would be stored using (#$aimlPred #$aimlvar-myvar "Myvar's value").

Queries from the AIML interpreter to OpenCyc can be either result in a direct lookup or the use
of inference. This allows the values of the AIML side predicates to be inferred when possible
from OpenCyc.

Another aspect is to make the <topic> tag variable controlled from the OpenCyc side. This again
allows complex rules to be created on the OpenCyc side to vary the response or processing
selected. For instance, depending on the relationship with or likes of the user, the system can
select categories that produce more different output.

4. SAMPLE AIML CATEGORIES

Let’s say we wanted to ask Cyc "Who is a female?"

In CycL/SubL this could be answered by:

(cyc-query '(#$and (#$isa ?WHO #$FemaleAnimal)(#$isa ?WHO #$Person))
#$EverythingPSC)

…and Cyc will return a list of all the symbols that match both being a female animal and a
person. #$EverythingPSC is a microtheory connected to everything in system. So in the context
of everything in knowledge base, find something that is a female animal and a person. In my
case this returns:

200 (((?WHO . #$Femie)) ((?WHO . #$Susan)) ((?WHO . #$Self)))

We can write a generic category using the above tags

<category>

<pattern>WHO IS A *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$isa ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom>
is a <star/>.

</template>

</category>

We replaced the ?WHO with ?REPLY. Any value bound to the ?REPLY variable will be selected
at random by the <cycrandom> tag. We let the system take its best guess at the object class
being requested via the "cycterm><star index="1"/></cycterm>".

This category will then produce the following:

User: who is a female

Cyn : I think Self is a female.

User: who is a american

Cyn : I think Susan is a american.

Variations in syntax can easily be handled with additional <srai> based categories.

5. SAMPLE DIALOG

The following was done with early tests of the system. Its purpose was to test the interface, not
to provide an example of a finished system.

Is a human a mammal ?

Affarmitive. I agree.

is a dog a vegetable ?

Nope. I can't prove that.

is kino alive ?

Affarmitive. I agree.

is a lion a animal ?

Affarmitive. I think so.

is a lion a product ?

Nope. I can't prove that.

is a lion a thing ?

Affarmitive. I beleive that.

is a dog a plant ?

Nope. I can't prove that.

Name some plant

FloweringPlant

is a dog a person

Negative. I can't say that.

who is a cyclist

I think CycAdministrator is a cyclist.

Is CycAdministrator a cyclist

Right. I agree.

Is CycAdministrator a person ?

Affarmitive. I agree.

Who is a student?

I think Self is a student. <-- one of
the things in the system profile

Are you a studen ? <-- note: fi-
complete fixed the typo and guessed
right

Right. I think so.

guess studen

I think studen means #$Student to Cyc

What do you want ?

I want Susan to like Self.

What do you want ?

I want Self to like Self.

[Since the cyc explainer is not
avaiable yet through the API I asked
OpenCyc through the web browser and got
the following justification]

Mt : DAX-SelfAwareMt

EL Query :

(desires Self ?WHAT)

Answer Bindings :

?WHAT ? (likes-Generic Self Self)

Justifications :

(implies

(isa ?ANYONE Person)

(desires Self

(likes-Generic ?ANYONE
Self))) in DAX-SelfAwareMt

:ISA (isa Self Person) in DAX-
SelfAwareMt

Hence the system wants to like itself.

Make Rover a Dog

200 #$Rover

200 T

Make Skippy a Dog

200 #$Skippy

200 T

Is Skippy a Dog ?

Affarmitive. I agree.

Is Rover a Dog ?

Right. I agree.

Is Skippy a Person ?

No. I can't prove that.

What is Skippy?

200 (((?REPLY . #$Thing)) ((?REPLY .
#$Individual)) ((?REPLY . #$Dog)))

Is skippy a mammal ?

Right. I agree.

Is skippy a animal ?

Affarmitive. I beleive that.

is skippy a person ?

No. Not that I know of.

What is rover ?

200 (((?REPLY . #$Thing)) ((?REPLY .
#$Individual)) ((?REPLY . #$Dog)))

Forget Skippy is a Dog

()

What is Skippy ?

FALSE

Is skippy a mammal ?

Negative. I can't prove that.

6. FUTURE EXTENSION IDEAS AND OPEN ISSUES

One possibility opened up is the use of external applets and agents that are interfaced through
the microtheory system and controllable through AIML. Internal rules can monitor and control
systems while system status can be queried via AIML, along with instruction for change.
Anything invokeable through the SubL interface (like the planner, future parsing tools,
explanation mechanisms…) should be accessible through CyN.

The pattern matching system coupled with <topic> can be used to provide a manual solution to
disambiguation. One word or phrase may have multiple meanings, but context provides a
solution to selecting the right one. This can be controlled by placing different interpretations in
different microtheories and then selecting the proper set of microtheories to use based on
context. Allowing such context changes or dynamic redefinition of the microtheory hierarchy
to remains to be implemented, but is fairly straightforward. Such implementation would
involve a simple retraction then reassertion of the link between microtheories.

The system can easily make use of additional linguistic resources. An English to CycL parser is
being developed in the form of Daxtron Labs’ Rosetta parser, and Cycorp’s yet-to-be-released
natural language tools. Using it with either tool or others would add additional flexibility in the
interface categories. Another possibility is to construct a simple noun-phrase parser, which is
slated for earlier release by the OpenCyc project. One possibility to be explored is to parse the
atomic AIML patterns (those without “*”’s in them) with an CycL aware parser, and generate
categories that make the corresponding assertions in the OpenCyc KB. Such a catalog of parses
can be fine tuned or contextualized as required by the target application.

I believe that the <cyccondition> and <guard> tag has the most potential for providing an
effective link between system. With them the AIML flow of execution can be controlled via
CycL logical statements. This has additional power when coupled with external applications
making assertions to the OpenCyc KB. A great deal of processing can be hidden in a single
statement. For a tongue-in-cheek example:

CyN

OpenCyc

External Apps

External Apps

External Apps

<category>

<pattern>REPORT SYSTEM STATUS</pattern>

<template>

<cyccondition query=”(fi-ask ‘(#$processstatus #$reactor
#$critical))”>Evacuate facility! The reactor is melting. Run!!!
</cyccondition>

<cyccondition query=”(fi-ask ‘(#$processstatus #$reactor
#$normal))”>Reactor is fine</cyccondition>

<cyccondition query=”(fi-ask ‘(#$processstatus #$security
#$compromised))”> Intruders are detected</cyccondition>

<cyccondition query=”(fi-ask ‘(#$processstatus #$security
#$normal))”>Everything is secure</cyccondition>

</template>

</category>

<category>

<pattern>WHAT DO YOU SEE </pattern>

<template>

<cyccondition>

<li query=”(fi-ask ‘(#$sees #$self #$Dog))”> I see a doggy.

<li query=”(fi-ask ‘(#$sees #$self #$Cat))”> I see a kitty.

<li query=”(fi-ask ‘(#$and (#$sees #$self ?SOMEONE)(#$isa
#$?SOMEONE #$Friend)))”> I see someone neat. :-)

I don’t know how to describe what I see

</cyccondition>

</template>

</category>

Each query through OpenCyc could trigger either a simple lookup or a very long proof process
using any number of the OpenCyc supported inference processes. But the desired information
and its response are compactly represented in a way that allows easy scripting.

The other possibility brought up by the <cyccondition> and <guard> tag is to possibly create a
generic tag that specifies external evaluation in general and not just to OpenCyc. Thus
<externalcondition method=”{sql,lisp,prolog,cycl…}” query=”query text in method language”>
would do the same thing as <cyccondition> but for any of the supported target languages. The
same benefits should result but with even wider usage possibilities. AIML methods exist for
generation of clarification dialogs and can be reused with the new tag set to provide for basic
knowledge entry functions. One natural consequence of storing responses in OpenCyc (as with
using <cycrandom> tag) is you can just assert new responses, including rules. Also you can
store responses that in turn make assertions in OpenCyc for use on the AIML side.

One shortcoming of the existing system is that the CycL is opaque strings to CyN; text
transformed according to the rules of AIML and passed to OpenCyc. This allows flexibility, but

it also ignores CycL syntax. Detailed error checking of CycL on the AIML side was not in the
scope of the project.

And finally, is the question of actually creating a new AIML set that has the coverage of Alice
with the appropriate hooks to OpenCyc. Some of this could be done through automated tools
parsing the existing AIML set and producing results for review. But ultimately it will require
lots of bot masters familiar both with AIML and CycL writing or reviewing lots of categories.
The one advantage of involving the AIML/ CycL communities is they both are built on large,
mostly manually entered knowledge bases, and both recognize that effort is required for
achieving the results they desire. I hope this project will convince some that a merger of efforts
is useful to goals of both groups.

7. CONCLUSION

It is indeed possible to interface OpenCyc and AIML. While most of the basic features could be
implemented using the <system> tag, but the few additions simplify the interface task for the
AIML/CycL writer, and speed up the interaction. The direct coupling of the AIML predicate
store to a Cyc microtheory requires further investigation at this time. The addition of
<cyccondition> and <guard> tags opens up other levels of context sensitivity made possible by
combinations of complex facts.

Chatbots as a user interface could have uses in many domains, some of which are outside the
normal social conversation system. For better or worse, people expect a system to both handle
real, complex tasks as well as to be sociable. CyN hopes to bridge that gap by providing access
to a powerful first-order predicate logic engine in the form of OpenCyc, coupled with the
personality scripting polish of AIML. Both the left-brain and right-brain are needed to make a
complete system.

The early LISP programs of SIR and ELIZA had the ability to evaluate arbitrary expressions and
invoke any LISP program. CyN brings that talent to AIML, through its coupling with the SubL
interface. Hundreds of person-years of Cycorp commonsense research is now accessible
through an easy-to-use scripting front-end.

The ultimate question is does such a coupling between systems create something that is more
useful than either alone. For the application area of creating models using Chatbots, we believe
that this is the case.

APPENDIX A — ACKNOWLEDGEMENTS

ALICE A.I Foundation, Inc. and Dr. Richard Wallace for Alice and AIML

Cycorp and Douglas Lenat for Cyc and OpenCyc

Gary Debuque for Program N

The AIML and OpenCyc Forums and User communities

Douglas Miles for insight into English parsing using OpenCyc

APPENDIX B — REFERENCES

Prolog References from Dr. Wallace’s PSYCH paper:

1. Prolog Tutorial
http://cs.wwc.edu/~cs_dept/KU/PR/Prolog.html
2. A Short Tutorial on Prolog
http://cbl.leeds.ac.uk/~tasmin/prologtutorial/
3. Prolog Programming: A First Course
http://cbl.leeds.ac.uk/~paul/prologbook/
4. GNU Prolog site
http://pauillac.inria.fr/~diaz/gnu-prolog.

AIML References:

1. Documentation
http://alicebot.org/documentation
2. Don't Read Me: Program dB
http://alicebot.org/articles/wallace/dont-dB.html
3. AIML Specification (Working Draft)
http://alicebot.org/TR/2001/WD-aiml

OpenCyc KB in DAML format (they forgot to update the date side bar so it looks old):

http://www.cyc.com/2002/04/08/cyc.daml

http://cs.wwc.edu/~cs_dept/KU/PR/Prolog.html
http://cbl.leeds.ac.uk/~tasmin/prologtutorial/
http://cbl.leeds.ac.uk/~paul/prologbook/
http://pauillac.inria.fr/~diaz/gnu-prolog
http://alicebot.org/documentation
http://alicebot.org/articles/wallace/dont-dB.html
http://alicebot.org/TR/2001/WD-aiml
http://www.cyc.com/2002/04/08/cyc.daml

ThoughtTreasure in CycL format (lots of assertions about everyday stuff):

http://www.signiform.com/tt/ttkb/tt0.00022.cycl.gz

Also some additional KB pointers at:

http://www.daxtron.com/Ontology.htm

http://www.wisdominajar.com/prolog/prolog01.html shows how to create a "Prolog"-style
reasoning system in AIML.

http://www.wisdominajar.com/prolog/prolog02.html is a description of an experiment linking
the Prolog interpreter PSYCH to Program D using <system>.

Dr. Wallace posted an article about this, "PSYCH - Activating Prolog from AIML":
http://list.alicebot.org/pipermail/alicebot-style/2001-November/000041.html

He also taught us that we can do it all in AIML:
http://list.alicebot.org/pipermail/alicebot-style/2001-December/000013.html

An very early system that combined pattern matching with semantic processing is found in
Bertram Raphael’s thesis “SIR: A Computer Program for Semantic Information Retrieval”, June
1964 paper “AITR-220” on
http://www.ai.mit.edu/research/publications/browse/0200browse.shtml

ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-220.pdf (14 Meg snapshots)

http://www.signiform.com/tt/ttkb/tt0.00022.cycl.gz
http://www.daxtron.com/Ontology.htm
http://www.wisdominajar.com/prolog/prolog01.html
http://www.wisdominajar.com/prolog/prolog02.html
http://list.alicebot.org/pipermail/alicebot-style/2001-November/000041.html
http://list.alicebot.org/pipermail/alicebot-style/2001-December/000013.html
http://www.ai.mit.edu/research/publications/browse/0200browse.shtml
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-220.pdf

APPENDIX C — AIML CATEGORIES
<aiml>

<!-- Convert YOU to Self --->

<category>

<pattern>* YOU *</pattern>

<template><srai><star index="1"/> SELF <star index="2"/></srai></template>

</category>

<category>

<pattern>* YOU</pattern>

<template><srai><star index="1"/> SELF</srai></template>

</category>

<category>

<pattern>YOU *</pattern>

<template><srai> SELF <star index="1"/></srai></template>

</category>

<!-- Basic Text cases -->

<category>

<pattern>CYCSET *</pattern>

<template>

<think><set name="cycvar"><star/></set></think>

I tried to set cycvar to <star/>.

</template>

</category>

<category>

<pattern>CYCGET *</pattern>

<template>

I tried to get cycvax as <get name="cycvax"/>.

</template>

</category>

<category>

<pattern>CYCISA * A *</pattern>

<template>

<cycsystem>(cyc-query '(#$genls <cycterm><star index="1"/></cycterm> <cycterm><star
index="2"/></cycterm>) #$EverythingPSC)</cycsystem>

</template>

</category>

<category>

<pattern>COMPLETE *</pattern>

<template>

<cycsystem>(fi-complete "<star index="1"/>")</cycsystem>

</template>

</category>

<category>

<pattern>EXPLAIN *</pattern>

<template>

<cycrandom>(fi-ask '(#$comment <cycterm><star index="1"/></cycterm> ?REPLY)
#$EverythingPSC)</cycrandom>

</template>

</category>

<category>

<pattern>TRANSLATE *</pattern>

<template>

<cycsystem>(fi-ask '(#$denotation #$<sentence><star index="1"/></sentence> ?TEXT ?TYPE
?CYCOBJECT) #$EverythingPSC)</cycsystem>

</template>

</category>

<category>

<pattern>GUESS *</pattern>

<template>

I think <star/> means <cycterm><star index="1"/></cycterm> to Cyc

</template>

</category>

<category>

<pattern>CYCLI *</pattern>

<template>

<cycrandom>(fi-ask '(#$aimlResponse #$response1 ?REPLY) #$AimlContextMt)</cycrandom>

</template>

</category>

<category>

<pattern>CYCIT *</pattern>

<template>

<cycrandom>(fi-ask '(#$denotation #$<sentence><star index="1"/></sentence>-TheWord
?TEXT ?TYPE ?REPLY) #$EverythingPSC)</cycrandom>

</template>

</category>

<!-------------- "NORMAL" USE ----------->

<category>

<pattern>WHAT IS A *</pattern>

<template>

Generalizations:

<cycsystem>(cyc-query '(#$genls <cycterm><star index="1"/></cycterm> ?WHAT)
#$EverythingPSC)</cycsystem>

Instance Of:

<cycsystem>(cyc-query '(#$isa <cycterm><star index="1"/></cycterm> ?WHAT)
#$EverythingPSC)</cycsystem>

</template>

</category>

<category>

<pattern>NAME SOME *</pattern>

<template>

<cycrandom>(cyc-query '(#$genls ?REPLY <cycterm><star index="1"/></cycterm>)
#$EverythingPSC)</cycrandom>

</template>

</category>

<category>

<pattern>WHO IS A *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$isa ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> is a
<star/>.

</template>

</category>

<category>

<pattern>WHO INFLUENCES *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$influencesAgent ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> can
influence <star/>.

</template>

</category>

<category>

<pattern>WHO DOES * INFLUENCE</pattern>

<template>

I think <star/> can influence <cycrandom>(cyc-query '(#$and (#$influencesAgent
<cycterm><star index="1"/></cycterm> ?REPLY) (#$isa ?REPLY #$Person))#$EverythingPSC
)</cycrandom>.

</template>

</category>

<category>

<pattern>WHO DOES * BOSS</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$boss ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> works
for <star/>.

</template>

</category>

<category>

<pattern>WHO ELSE IS *</pattern>

<template>

<srai>WHO IS <star/></srai>

</template>

</category>

<category>

<pattern>* IS THE * OF WHO</pattern>

<template>

I think <star/> is the <star index="2"/> of <cycrandom>(cyc-query '(#$and
(<cycterm><star index="2"/></cycterm> ?REPLY <cycterm><star index="1"/></cycterm>)
(#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom>.

</template>

</category>

<category>

<pattern>WHO IS THE * OF *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (<cycterm><star index="1"/></cycterm>
<cycterm><star index="2"/></cycterm> ?REPLY) (#$isa ?REPLY #$Person))#$EverythingPSC
)</cycrandom> is the <star index="1"/> of <star index="2"/>.

</template>

</category>

<category>

<pattern>WHO IS AN *</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$isa ?REPLY <cycterm><star
index="1"/></cycterm>) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> is a
<star/>.

</template>

</category>

<category>

<pattern>WHO IS * MATE</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$or (#$mate <cycterm><star
index="1"/></cycterm> ?REPLY)(#$mate ?REPLY <cycterm><star index="1"/></cycterm>))
(#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> is mate of <star/>.

</template>

</category>

<category>

<pattern>WHO IS * LOVE INTEREST</pattern>

<template>

I think <cycrandom>(cyc-query '(#$and (#$or (#$romanticInterest <cycterm><star
index="1"/></cycterm> ?REPLY)(#$romanticInterest ?REPLY <cycterm><star
index="1"/></cycterm>)) (#$isa ?REPLY #$Person))#$EverythingPSC)</cycrandom> is
romantic interest of <star/>.

</template>

</category>

<category>

<pattern>WHO DOES * KNOW</pattern>

<template>

I think <star/> is aquainted with <cycrandom>(cyc-query '(#$and (#$or
(#$acquaintedWith <cycterm><star index="1"/></cycterm> ?REPLY)(#$acquaintedWith ?REPLY
<cycterm><star index="1"/></cycterm>)) (#$isa ?REPLY #$Person))#$EverythingPSC
)</cycrandom>.

</template>

</category>

<category>

<pattern>ARE YOU A *</pattern>

<template>

<srai>CYCREPLY <cycsystem>(cyc-query '(#$isa #$Self <cycterm><star
index="1"/></cycterm>) #$EverythingPSC)</cycsystem></srai>

</template>

</category>

<category>

<pattern>WHY IS A * A *</pattern>

<template>

<cycsystem>(why-isa? <cycterm><star/></cycterm> <cycterm><star index="2"/></cycterm>)
</cycsystem>

</template>

</category>

<category>

<pattern>WHY IS A * AN *</pattern>

<template>

<cycsystem>(why-isa? <cycterm><star/></cycterm> <cycterm><star index="2"/></cycterm>)
</cycsystem>

</template>

</category>

<category>

<pattern>WHY IS AN * A *</pattern>

<template>

<cycsystem>(why-isa? <cycterm><star/></cycterm> <cycterm><star index="2"/></cycterm>)
</cycsystem>

</template>

</category>

<category>

<pattern>WHY IS AN * AN *</pattern>

<template>

<cycsystem>(why-isa? <cycterm><star/></cycterm> <cycterm><star index="2"/></cycterm>)
</cycsystem>

</template>

</category>

<category>

<pattern>WHAT DO YOU WANT</pattern>

<template>

<srai>WHAT DOES SELF WANT</srai>

</template>

</category>

<category>

<pattern>WHAT DOES SELF WANT</pattern>

<template>

<srai>SELFWANTS <cycrandom>(fi-ask '(#$desires #$Self ?REPLY) #$DAX-SelfAwareMt
3)</cycrandom></srai>

</template>

</category>

<category>

<pattern>WHAT DOES * WANT</pattern>

<template>

<cycsystem>(fi-ask '(#$desires <cycterm><star/></cycterm> ?REPLY) #$EverythingPSC
3)</cycsystem>

</template>

</category>

<category>

<pattern>SELFWANTS LIKES-GENERIC * *</pattern>

<template> I want <star index="1"/> to like <star index="2"/>. </template>

</category>

<category>

<pattern>SELFWANTS *</pattern>

<template> I want whatever (<star index="1"/>) means in English. </template>

</category>

<!--------- The PSYCH ISA Categories ----------->

<!--------- note OpenCyc uses #$isa and #$genls for 'is a' -------->

<category>

<pattern>IS A * A *</pattern>

<template>

<srai>CYCREPLY <cycsystem>(cyc-query '(#$or (#$isa <cycterm><star
index="1"/></cycterm> <cycterm><star index="2"/></cycterm>)(#$genls <cycterm><star
index="1"/></cycterm> <cycterm><star index="2"/></cycterm>)) #$EverythingPSC
)</cycsystem></srai>

</template>

</category>

<category>

<pattern>IS A * AN *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<category>

<pattern>IS AN * A *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<category>

<pattern>IS AN * AN *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<category>

<pattern>IS * A *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<category>

<pattern>IS * AN *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<category>

<pattern>IS * *</pattern>

<template><srai>IS A <star/> A <star index="2"/></srai></template>

</category>

<!------ If you want to SARI into a AIML based processor set --------->

<category>

<pattern>CYCREPLY *</pattern>

<template>

<star/>

</template>

</category>

<category>

<pattern>CYCREPLY 500 * IS NOT AN EXISTING CONSTANT</pattern>

<template>

I am sorry. Cyc does not have a Constant called <star/>.

</template>

</category>

<category>

<pattern>CYCREPLY TRUE</pattern>

<template>

<random>

Yes.

Affarmitive.

Right.

</random>

<random>

I beleive that.

I agree.

I think so.

</random>

</template>

</category>

<category>

<pattern>CYCREPLY FALSE</pattern>

<template>

<random>

No.

Negative.

Nope.

</random>

<random>

I can't prove that.

I can't say that.

Not that I know of.

</random>

</template>

</category>

</aiml>

APPENDIX D — OPENCYC KE TEXT
Default Mt: UniversalVocabularyMt.

Constant: AimlContextMt.

isa: DataMicrotheory.

genlMt: BaseKB.

comment: "#$AimlContextMt contains storage location in OpenCyc for AIML variables".

Default Mt: AimlContextMt.

Constant:aimlPred.

isa:BinaryPredicate.

arg1Isa:Thing.

arg2Isa:Thing.

comment:" (#$aimlPred $#aimlvar-var 'aimlval') means that The AIML Variable
#$aimlvar-var is associated with it value 'aimlval' ".

Constant:aimlTopic.

isa:BinaryPredicate.

arg1Isa:Thing.

arg2Isa:Thing.

comment:" (#$aimlTopic $#aimldomain 'aimlval') is used to control the <topic> tag in
the aiml interperter. ".

constant:aimlResponse.

isa:BinaryPredicate.

arg1Isa:Thing.

arg2Isa:Thing.

comment:" (#$aimlResponse $#key 'reply') response to ?REPLY for <cycrandom> testing".

constant:response1.

aimlResponse:"response A".

aimlResponse:"response B".

aimlResponse:"response C".

aimlResponse:"response D".

APPENDIX E — AIMLCONTEXTMT SNAPSHOT

AIMLContext Snapshot:
Microtheory : AimlContextMt

Bookkeeping Assertions :

(myCreator AimlContextMt Kino) in BookkeepingMt

(myCreationPurpose AimlContextMt OpenCycProject) in BookkeepingMt

(myCreationTime AimlContextMt 20031211) in BookkeepingMt

(myCreationSecond AimlContextMt 222945) in BookkeepingMt

GAF Arg : 1

Mt : UniversalVocabularyMt

isa : DataMicrotheory

genlMt : NameStringDefinitionMt BaseKB

comment : "AimlContextMt contains storage location in OpenCyc for AIML variables"

Microtheory Contents:
(aimlResponse response1 "response D")

(aimlResponse response1 "response C")

(aimlResponse response1 "response B")

(aimlResponse response1 "response A")

(comment aimlPred " (aimlPred $#aimlvar-var 'aimlval') means that The AIML Variable
#$aimlvar-var is associated with it value 'aimlval' ")

(comment aimlResponse " (aimlResponse $#key 'reply') response to ?REPLY for
<cycrandom> testing")

(argIsa aimlResponse 2 Thing)

(arg2Isa aimlResponse Thing)

(argIsa aimlResponse 1 Thing)

(arg1Isa aimlResponse Thing)

(aimlPred aimlVar-cycvar "test5")

(aimlPred aimlVar-cycvax "Hello from CycVax Var value thingy")

(comment aimlTopic " (aimlTopic $#aimldomain 'aimlval') is used to control the
<topic> tag in the aiml interperter. ")

(argIsa aimlTopic 2 Thing)

(arg2Isa aimlTopic Thing)

(argIsa aimlTopic 1 Thing)

(arg1Isa aimlTopic Thing)

(comment aimlPred " (aimlPred $#aimlvar-var 'aimlval') means that The AIML Variable
#$aimlvar-var is associated with it value 'aimlval' ")

(argIsa aimlPred 2 Thing)

(arg2Isa aimlPred Thing)

(argIsa aimlPred 1 Thing)

(arg1Isa aimlPred Thing)

	LIVING IN CYN:
	MATING AIML AND CYC TOGETHER WITH PROGRAM N
	1. AIML, OPENCYC, CYCL API AND ENGLISH
	CyN’s Design Principles
	What is AIML? … and the History of Pattern Matching
	
	
	
	Example AIML Categories

	What is OpenCyc?
	What is the CycL API?
	English Terms and CycL Symbols

	2. THE “TAG” REFERENCE
	The <cycterm> tag
	
	
	
	
	Basic English word to Cyc term lookup process

	The <cycsystem> tag
	The <cycrandom> tag
	The <cycretract> and <cycassert> tags
	The <cyccondition> tag
	
	
	Dialog using above categories:

	The <guard> tag
	
	
	
	
	
	Test dialog using above categories

	3. OPENCYC AS A PREDICATE STORE
	4. SAMPLE AIML CATEGORIES
	5. SAMPLE DIALOG
	6. FUTURE EXTENSION IDEAS AND OPEN ISSUES
	7. CONCLUSION
	APPENDIX A — ACKNOWLEDGEMENTS
	APPENDIX B — REFERENCES
	
	
	
	Also some additional KB pointers at:

	APPENDIX C — AIML CATEGORIES
	APPENDIX D — OPENCYC KE TEXT
	APPENDIX E — AIMLCONTEXTMT SNAPSHOT
	AIMLContext Snapshot:
	Microtheory Contents:

